原标题:神经行为学:AI 之外的另一条路
从人类的大脑和智慧中,抽取提炼某种技术,是一件源远流长的工作。能不能让机械像人类一样识别、判断和思考,最终发展出了今天的 AI。
而在另一项 " 兄弟研究 " 里,却一步步发展出了今天的类脑芯片——换言之,类脑芯片的起点某种程度上来说跟 AI 没啥关系。因为它类的是青蛙的脑。
早在 16 世纪,达芬奇就在手稿中分析过无头青蛙也能活的现象,某种程度上来说他发现了生物电和中枢神经系统的秘密。但是我们知道达芬奇手稿近世才被披露,所以这个发现就像他很多惊天发明一样变成了 " 达芬奇的秘密 "。

1786 年,伽格尼发现了青蛙挂在金属栅栏上腿会抽动的现象,继而一步步建立了早期生物电学。沿着青蛙们以高贵牺牲精神开拓的道路,人类逐渐发现了生物电和神经系统的奥秘。即生物的神经运转,是依靠生物电刺激神经元节点,最终实现了大脑控制机体的网状神经结构。
由这个结构开始,神经学界很自然就会思考另一个问题:既然动物是依靠神经元来传递信息、进行控制的,那么这种控制是如何发生的呢?
围绕这个问题,人类在 20 世纪开始漫长的,对神经传递、神经动力的研究,并在 1963 年完成了神经行为学的术语概念确认。这个学科中,研究者从生物、解剖、神经反射等多个角度提出了关于神经元的行为学模型。其中很多关于神经元计算的讨论,甚至早于 AI 概念的提出。
我们知道,今天人工神经网络是 AI 的基石,但人工神经网络的提出,其实只是上世纪 70 年代,AI 和计算机学界对神经元研究的一次借鉴,主要是模仿了神经元分层处理的特征。它的基础还是坐落在统计学和控制论的概念上。
但随着 AI 和现代计算的不断发展,作为 " 兄弟学科 " 的神经行为学自身也在进步。于是就有人联想到了,能不能直接整体移植神经元系统,在现实世界里,把类似动物大脑中神经元行为的动力机制变成一种运算机制?
之所以要这么干,主要还是临近 21 世纪,人类发现冯诺依曼架构不断抵近极限。一种从根儿上不同于经典计算的计算架构,或许是最一劳永逸的解决办法。量子计算是一种解决方式,而全仿生神经元行为学的解决方案则是另一种——这一种在大部分时候就被简称为类脑计算。
事实上,类脑计算中除了神经元行为学的仿生计算,也还要其他计算方式。但今天,毫无疑问模仿神经元行为是最成功的一种,于是我们今天看到的二者大体是可以划等号的。
毕竟人脑肯定是最好的计算机,加上想发展 AI,那么类似人脑结构的计算方式显然极具魅惑。于是类脑计算在众多新计算形式中天然占据着加分项,而又过了几十年,摩尔定律的极限愈发明显的今天,类脑计算也确实拿出了一些成绩。